\(-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}-\frac{\mathrm{q}}{\mathrm{C}}-\mathrm{iR}=0\)
\(\mathrm{L} \frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}+\frac{1}{\mathrm{C}} \mathrm{q}+\mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}=0\)
for damped oscillator
net force \(=-\mathrm{kx}-\mathrm{bv}=\mathrm{ma}\)
\(\frac{m d^{2} x}{d t^{2}}+k x+\frac{b d x}{d t}=0\)
by comparing : Equivalence is
\(\mathrm{L} \rightarrow \mathrm{m}: \mathrm{C} \rightarrow \frac{1}{\mathrm{K}} ; \mathrm{R} \rightarrow \mathrm{b}\)