\(\begin{gathered}
a = \frac{f}{{M + m}} = \frac{{\mu \left( {M + m} \right)g}}{{(M + m)}} = \mu g \hfill \\
= 0.05 \times 10 = 0.5\,m{s^{ - 2}} \hfill \\
{V_0} = \frac{{Initial\,momentum\,}}{{\left( {M + m} \right)}} = \frac{{0.05V}}{{10.05}} \hfill \\
m = 50g\,\,\,\,\,\,\,\,\,\,\,\,M = 10\,kg \hfill \\
\end{gathered} \)
\({\left( {\frac{{0.05v}}{{10.05}}} \right)^2} = 2 \times 0.5 \times 2\)
Solving we get \(v = 201\sqrt 2 \) object falling from height \(H.\)
\(\begin{gathered}
\frac{V}{{10}} = \sqrt {2gh} \hfill \\
\frac{{201\sqrt 2 }}{{10}} = \sqrt {2 \times 10 \times H} \hfill \\
\end{gathered} \)
\(H = 40\; m = 0.04\; km\)
\(\begin{gathered}
{v^2} - {u^2} = 2as \hfill \\
0 - {u^2} = 2as \hfill \\
{u^2} = 2as \hfill \\
\end{gathered} \)
$U =\frac{\alpha}{ r ^{10}}-\frac{\beta}{ r ^{5}}-3$
જ્યાં,$\alpha$ અને $\beta$ ધન અચળાંકો છે. બે પરમાણુઓ વચ્ચેનું સંતુલન અંતર $\left(\frac{2 \alpha}{\beta}\right)^{\frac{a}{b}}$ હશે જ્યાં $a=..........$ છે