\(mv =16 m v ^{\prime} \Rightarrow v ^{\prime}= v / 16\)
Now initial energy \(E _{1}=\frac{1}{2} mv ^{2}\)
Final energy \(: E _{ f }=\frac{1}{2} \times 16 m \times\left(\frac{ v }{16}\right)^{2}\)
\(\Rightarrow E _{ f }=\frac{1}{2} m \frac{ v ^{2}}{16}\)
Energy loss : \(E _{ i }- E _{ f }\)
\(\Rightarrow \frac{1}{2} mv ^{2}-\frac{1}{2} m \frac{ v ^{2}}{16}\)
\(\Rightarrow \frac{1}{2} mv ^{2}\left[1-\frac{1}{16}\right] \Rightarrow \frac{1}{2} mv ^{2}\left[\frac{15}{16}\right]\)
\(\% p=\frac{\text { Energy loss }}{\text { Original energy }} \times 100\)
\(=\frac{\frac{1}{2} mv ^{2}\left[\frac{15}{16}\right]}{\frac{1}{2} mv ^{2}} \times 100=93.75 \%\)
\(\Rightarrow\) Value of \(P\) is close to \(94\)