\(E=PE+KE\)
\( = - \frac{{GMm}}{{\left( {R + h} \right)}} + \frac{1}{2}m{v^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)\)
Also, \(\frac{{m{v^2}}}{{\left( {R + h} \right)}} = \frac{{GMm}}{{\left( {R + {h^2}} \right)}}\)
or, \({v^2} = \frac{{GM}}{{R + h}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)\)
From eqns, \((i)\) and \((ii)\),
\(E = - \frac{{GMm}}{{\left( {R + h} \right)}} + \frac{1}{2}\frac{{GMm}}{{\left( {R + h} \right)}} = - \frac{1}{2}\frac{{GMm}}{{\left( {R + h} \right)}}\)
\( = - \frac{1}{2}\frac{{GM}}{{{R^2}}} \times \frac{{m{R^2}}}{{\left( {R + h} \right)}}\)
\( = - \frac{{m{g_0}{R^2}}}{{2\left( {R + h} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\left( {{g_0} = \frac{{GM}}{{{R^2}}}} \right)\)
[ પૃથ્વીની ત્રિજ્યા $=6400\,km$, પૃથ્વીનું દળ $=6 \times 10^{24}\, kg$ ]