from momentum conservation
in \(x\)-direction \(M V_{0}=M V_{1} \cos \theta+m V_{2} \cos \theta\)
in \({y}\)-direction \(0={MV}_{1} \sin \theta-{m} {V}_{2} \sin \theta\)
Solving above equations
\({V}_{2}=\frac{{MV}_{1}}{{m}}, {V}_{0}=2 {V}_{1} \cos \theta\)
From energy conservation
\(\frac{1}{2} {MV}_{0}^{2}=\frac{1}{2} {MV}_{1}^{2}+\frac{1}{2} {MV}_{2}^{2}\)
Substituting value of \({V}_{2} \& {V}_{0}\), we will get
\(\frac{{M}}{{m}}+1=4 \cos ^{2} \theta \leq 4\)
\(\frac{{M}}{{m}} \leq 3\)