\(w_{e q}=m g-m \omega^2 R_e\)
\(w_\rho=m g\)
\(\frac{w_p-w_{e q}}{w_{\text {eq }}}=\frac{m \omega^2 R}{m g-m \omega^2 R}\)
\(=\frac{\omega^2 R}{g-\omega^2 R} \quad\left[\omega^2 R=0.0337 \,m / s ^2\right]\)
\(\Rightarrow \frac{\Delta w}{w_{e q}}=\frac{0.0337}{9.81-0.0337}=0.3447 \times 10^{-2}\)
\(\Rightarrow \frac{\Delta w}{w_{e q}} \times 100=0.3447\)
\(\Rightarrow \text { Increases by } 0.34 \%\)
[$g=\frac{G M}{R^{2}}=9.8 \,ms ^{-2}$ લો અને પૃથ્વીની ત્રિજ્યા $R =6400\, km$]