${t_1}\alpha \frac{1}{{[X]_0^{x - 1}}}$
$X = n - 1$ લેતાં ,
${{\text{t}}_{\frac{{\text{1}}}{{\text{2}}}}}\alpha \frac{1}{{[R]_0^{n - 2}}}$
$t_{1/2} \propto [R]_0^{2-n}$
ઉપરોક્ત પ્રક્રિયાનો અભ્યાસ $800^{\circ} C$ એ કરવામાં આવ્યો. યોગ્ય માહિતી નીચેના કોષ્ટકમાં આપેલી છે.
Run | $H2$ નું પ્રારંભિક દબાણ / $kPa$ | $NO$ નું પ્રારંભેક દબાણ / $kPa$ | પ્રારંભિક વેગ $\left(\frac{- dp }{ dt }\right) /( kPa / s )$ |
$1$ | $65.6$ | $40.0$ | $0.135$ |
$2$ | $65.6$ | $20.1$ | $0.033$ |
$3$ | $38.6$ | $65.6$ | $0.214$ |
$4$ | $19.2$ | $65.6$ | $0.106$ |
$NO$ ના સંદર્ભે પ્રક્રિયાનો ક્રમ ......... છે
$\gamma_{1} A +\gamma_{2} B \rightarrow \gamma_{3} C +\gamma_{4} D$
જ્યાં $v_{1}, v_{2}, v_{3}$ અને $v_{4}$ એ પૂર્ણાંક છે. $(i.e.$ $\left.1,2,3,4 \ldots . .\right)$
$10$ સેકન્ડોના અંતરાલ માં $C$ ની સાંદ્રતા $10\,m\,mol\,dm ^{-3}$ માંથી $20\,m\,mol\,dm ^{-3}$ માં ફેરફાર થાય છે.$D$નો દશ્ય થવાનો વેગ એ $B$ના અદશ્ય થવાના વેગ કરતા $1.5$ ગણો છે, ને $A$ ના અદશ્ય થવાના વેગ કરતા બમણો છે.પ્રાયોગિક રીતે $D$ના દશ્ય થવાનો વેગ $9,m\,mol\,dm ^{-3} \,s ^{-1}$ શોધવામાં આવ્યો.તેથી પ્રક્રિયાનો વેગ $\dots\dots\,\,m\,mol$$dm ^{-3} s ^{-1}.$