So, the law can be given as
\(R=k[A]^{x}[B]^{y}\) ...... \((i)\)
When the concentration of only \(\mathrm{B}\) is doubled, the rate is doubled, so
\(R_{1}=k[A]^{x}[2 B]^{y}=2 R\) ..... \((ii)\)
If concentrations of both the reactants \(A\) and \(B\) are doubled, the rate increases by a factor of \(8,\) so \(R^{\prime \prime}=k[2 A]^{x}[2 B]^{y}=8 R\) .... \((i i i)\)
\(\Rightarrow k 2^{x} 2^{y}[A]^{x}[B]^{y}=8\, R\) ..... \((iv)\)
From Eqs. \((i)\) and \((ii)\),
we get \(\Rightarrow \quad \frac{2 R}{R}=\frac{|A|^{x}|2 B|^{y}}{|A|^{x}|B|^{y}}\)
\(2=2^{y}\)
\(\therefore y=1\)
From Eqs. (i) and (iv), we get \(\Rightarrow \frac{8 R}{R}=\frac{2^{x} 2^{y}[A]^{x}|B|^{y}}{|A|^{x}[B]^{y}}\)
or \(8=2^{x} 2^{y}\)
Substitution of the value of \(y\) gives,
\(8=2^{x} 2^{1}\)
\(4=2^{x}\)
\((2)^{2}=(2)^{x}\)
\(x=2\)
Substitution of the value of \(x\) and \(y\) in Eq. \((i)\) gives,
\(R=k[A]^{2}[B]\)
$2 A + B \longrightarrow C + D$
પ્રયોગ | $[ A ] / molL ^{-1}$ | $[ B ] / molL ^{-1}$ | પ્રાથમિક $rate/molL$ $^{-1}$ $\min ^{-1}$ |
$I$ | $0.1$ | $0.1$ | $6.00 \times 10^{-3}$ |
$II$ | $0.1$ | $0.2$ | $2.40 \times 10^{-2}$ |
$III$ | $0.2$ | $0.1$ | $1.20 \times 10^{-2}$ |
$IV$ | $X$ | $0.2$ | $7.20 \times 10^{-2}$ |
$V$ | $0.3$ | $Y$ | $2.88 \times 10^{-1}$ |
આપેલા ટેબલ માં $X$ અને $Y$ અનુક્રમે શું હશે ?
No | $[NH_4^+]$ | $[NO_2^-]$ | rate of reaction |
$1.$ | $0.24\, M$ | $0.10\, M$ | $7.2 \times {10^{ - 6}}$ |
$2.$ | $0.12\, M$ | $0.10\, M$ | $3.6 \times {10^{ - 6}}$ |
$3.$ | $0.12\, M$ | $0.15\, M$ | $5.4 \times {10^{ - 6}}$ |