So, the law can be given as
\(R=k[A]^{x}[B]^{y}\) ...... \((i)\)
When the concentration of only \(\mathrm{B}\) is doubled, the rate is doubled, so
\(R_{1}=k[A]^{x}[2 B]^{y}=2 R\) ..... \((ii)\)
If concentrations of both the reactants \(A\) and \(B\) are doubled, the rate increases by a factor of \(8,\) so \(R^{\prime \prime}=k[2 A]^{x}[2 B]^{y}=8 R\) .... \((i i i)\)
\(\Rightarrow k 2^{x} 2^{y}[A]^{x}[B]^{y}=8\, R\) ..... \((iv)\)
From Eqs. \((i)\) and \((ii)\),
we get \(\Rightarrow \quad \frac{2 R}{R}=\frac{|A|^{x}|2 B|^{y}}{|A|^{x}|B|^{y}}\)
\(2=2^{y}\)
\(\therefore y=1\)
From Eqs. (i) and (iv), we get \(\Rightarrow \frac{8 R}{R}=\frac{2^{x} 2^{y}[A]^{x}|B|^{y}}{|A|^{x}[B]^{y}}\)
or \(8=2^{x} 2^{y}\)
Substitution of the value of \(y\) gives,
\(8=2^{x} 2^{1}\)
\(4=2^{x}\)
\((2)^{2}=(2)^{x}\)
\(x=2\)
Substitution of the value of \(x\) and \(y\) in Eq. \((i)\) gives,
\(R=k[A]^{2}[B]\)
$Cl_2(aq)+H_2SO_4(aq) \rightarrow S(s)+2H^+(aq)+2Cl^-$
માટે પ્રક્રિયાવેગ $=K[Cl_2][H_2S]$ છે.
તો આ વેગ સમીકરણ માટે કઈ કાર્યપ્રણાલી સંકળાયેલી છે ?
$A.\,\, Cl_2 + H_2S \rightarrow H^+ + Cl^- + Cl^+ + HS^-\,\, $ (ધીમી)
$Cl^+ +HS^- \rightarrow H^+ +Cl^- +S \,$ (ઝડપી)
$B.\,\, H_2S \rightleftharpoons H^+ + HS^-\,$ (ઝડપી સંતુલન)
$Cl_2^+ + HS^- \rightarrow 2CI^- + H^+ + S\,\, $ (ધીમી)
$1$. $[A]$ $0.1$, $[B]$ $0.1 - $ પ્રારંભિક દર $ \rightarrow 7.5 \times 10^{-3}$
$2$. $[A]$ $0.3$, $[B]$ $0.2 -$ પ્રારંભિક દર $ \rightarrow 9.0 \times 10^{-2}$
$3$. $[A]$ $0.3$, $[B]$ $0.4 -$ પ્રારંભિક દર $ \rightarrow 3.6 \times 10^{-1}$
$4$. $[A]$ $0.4$, $[B]$ $0.1 -$ પ્રારંભિક દર $ \rightarrow 3.0 \times 10^{-2}$