\(==>\) \({B_1} = \frac{{{\mu _0}}}{{4\pi }}.\frac{{2\sqrt 2 \,i}}{a}\)
Hence magnetic field at centre due to all side
\(B = 4{B_1} = \frac{{{\mu _0}(2\sqrt 2 i)}}{{\pi a}}\)
Magnetic field due to \(n\) \(turns\)
\({B_{net}} = nB = \frac{{{\mu _0}2\sqrt 2 ni}}{{\pi a}} = \frac{{{\mu _0}2\sqrt 2 ni}}{{\pi (2l)}}\)\( = \frac{{\sqrt 2 {\mu _0}ni}}{{\pi l}}\)
$\left(N=100, I=1 A, R=2\, m, B=\frac{1}{\pi} T\right)$