$\therefore \,\,{K_1} \times {K_2}\,\, = \,\,\frac{{{{[N{H_3}]}^2}}}{{[{N_2}]{{[{H_2}]}^3}}}\, \times \,\frac{{{{[{N_2}]}^{\frac{1}{2}}}{{[{H_2}]}^{\frac{3}{2}}}}}{{[N{H_3}]}}\,\,\,\,\,\,\therefore \,\,{K_1} \times {K_2}\,\, = \,\,\frac{1}{{{K^2}}}\,\,\,\,\,\therefore \,\,{K_2}\,\, = \,\,\frac{1}{{\sqrt {{K_1}} }}$
$\mathrm{A}_{2}(\mathrm{g})+\mathrm{B}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{g}) \Delta_{r} \mathrm{H}=-\mathrm{X} \mathrm{kJ} ?$