$(a)\;\;60\; \mathrm{mL} \frac{\mathrm{M}}{10}\; \mathrm{HCl}+40 \;\mathrm{mL} \frac{\mathrm{M}}{10} \;\mathrm{NaOH}$
$(b)\;\;55\; \mathrm{mL} \frac{\mathrm{M}}{10}\; \mathrm{HCl}+45 \;\mathrm{mL} \frac{\mathrm{M}}{10} \;\mathrm{NaOH}$
$(c)\;\;75\; \mathrm{mL} \frac{\mathrm{M}}{5}\; \mathrm{HCl}+25 \;\mathrm{mL} \frac{\mathrm{M}}{5} \;\mathrm{NaOH}$
$(d)\;\;100\; \mathrm{mL} \frac{\mathrm{M}}{10}\; \mathrm{HCl}+100 \;\mathrm{mL} \frac{\mathrm{M}}{10} \;\mathrm{NaOH}$
તેઓ પૈકી કોની $pH$ $1$ ને સમાન થશે ?
So acid is left at the end of reaction
$\mathrm{N}_{\text {final solution }}=\left[\mathrm{H}^{+}\right] =\frac{\mathrm{N}_{1} \mathrm{V}_{1}-\mathrm{N}_{2} \mathrm{V}_{2}}{\mathrm{V}_{1}+\mathrm{V}_{2}}$
$=\frac{\frac{1}{5} \times 75-\frac{1}{5} \times 25}{75+25}$
$=\frac{1}{10}=0.1$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] =1$