$k=\frac{2.303}{t} \log \frac{a}{a-x}$
Where, $k=$ Rate constant
$a=$ initial concentration
$a-x=$ concentration after time ${ }^{\prime} t^{\prime}$
For half-life, $t=t_{1 / 2}, x=\frac{a}{2}$
On substituting the values, we get
$k=\frac{2.303}{t_{1 / 2}} \log \frac{a}{a-\frac{a}{2}}=\frac{2.303}{t_{1 / 2}} \log 2$
$=\frac{0.693}{t_{1 / 2}}$
$k=\frac{0.693}{t_{1 / 2}}$
Thus, $t_{1/2}$ of a first order reaction does not depend upon the concentration.
$2 {NO}_{({g})}+2 {H}_{2({~g})} \rightarrow {N}_{2({~g})}+2 {H}_{2} {O}_{({g})}$
$[NO]$ ${mol} {L}^{-1}$ |
${H}_{2}$ ${mol} {L}^{-1}$ |
વેગ ${mol}L^{-1}$ $s^{-1}$ |
|
$(A)$ | $8 \times 10^{-5}$ | $8 \times 10^{-5}$ | $7 \times 10^{-9}$ |
$(B)$ | $24 \times 10^{-5}$ | $8 \times 10^{-5}$ | $2.1 \times 10^{-8}$ |
$(C)$ | $24 \times 10^{-5}$ | $32 \times 10^{-5}$ | $8.4 \times 10^{-8}$ |
${NO}$ના સંદર્ભમાં પ્રક્રિયાનો ક્રમ $....$ છે.