\({\text{CBFC }}\) બ્રાંચનો અવરોધ \(\frac{1}{R} = \frac{1}{{2r}} + \frac{1}{{0.62r}} = \frac{1}{r}\left( {\frac{{2.62}}{{2 \times 0.62}}} \right)\)
\(\, \Rightarrow \,\frac{1}{R} = \frac{{2.62}}{{1.24r}}\,\,\,\,\)
\(\therefore \,\,\,R = \frac{{1.24r}}{{2.62}}\)
સમતુલ્ય \(R' = 2R + r\, = \,\,2 \times \frac{{1.24r}}{{2.62}} + r\)
\( = r\,\left( {\frac{{2.48}}{{2.62}} + 1} \right) = 1.946\,r\)
પરીપથમાં \({\text{AH}}\) રેખાને સંમીત છે. માટે \({\text{A}}\) અને \({\text{H}}\) વચ્ચેનો સમતુલ્ય અવરોધ \(\frac{1}{{{R_{eq}}}} = \frac{1}{{R'}} + \frac{1}{{R'}}\,\,\,\)
\( \Rightarrow \,\,{R_{eq}} = \frac{{R'}}{2} = \frac{{1.946}}{2}r\,\, = \,\,0.973\,r\)