જો $\Lambda_{{m}}^{\circ}$ $({HA})=190 \,{~S} \,{~cm}^{2} {~mol}^{-1}$, ${HA}$નો આયનીકરણ અચળાંક $\left({K}_{{a}}\right)$ $....\,\times 10^{-6}$ બરાબર છે.
\(=1000 \times \frac{2 \times 10^{-5}}{0.001}=20 {~S} {~cm}^{2} {~mol}^{-1}\)
\(\Rightarrow \alpha=\frac{\wedge_{{m}}}{\wedge_{{m}}^{\infty}}=\frac{20}{190}=\left(\frac{2}{19}\right)\)
\({HA} \rightleftharpoons {H}^{+}+{A}^{-}\)
\(0.001(1-\alpha) \,\,0.001 \alpha \,\,0.001 \alpha\)
\(\Rightarrow \quad {k}_{{a}}=0.001\left(\frac{\alpha^{2}}{1-\alpha}\right)=\frac{0.001 \times\left(\frac{2}{19}\right)^{2}}{1-\left(\frac{2}{19}\right)}\)
\(=12.3 \times 10^{-6}\)
$P (5.0 × 10^{-5}), Q (7.0 × 10^{-8}), R (1.0 × 10^{-10}), S (9.2 × 10^{-3})$
$[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-} + e^{-1}\, ;$ $ E^o = -0.35\, V$
$Fe^{2+} \rightarrow Fe^{3+} + e^{-1}\ ;$ $E^o = -0.77\, V$
$(1)$ $ 0.08\,M$ દ્રાવણ અને તેની વિશિષ્ટ વાહકતા $2 x × 10^{-2}\, \Omega^{-1}$
$(2)$ $0.1\,M$ દ્રાવણ અને તેની અવરોધકતા $50 5\, \Omega cm$. છે.