\( = \,\,(1.5 - 1)\,\,\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\,\,\, = \,\,(0.5)\,\,\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\,\,........\,\,\,(1)\)
પ્રવાહી \(\frac{1}{{{{f}_{l}}}}\,\,\, = \,\,\,{(_{l}}{\mu _g} - 1)\,\,\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{1}{{{{f}_{l}}}}\,\, = \,\,\,\left( {\frac{{1.5\,\, - \,\,1.6}}{{1.6}}} \right)\,\,\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\)
\( = \,\, - \,\,\,\frac{{0.1}}{{1.6}}\,\,\,\left( {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right)\,\,\,..........\,\,\,(2)\)
\((1)\) અને \((2)\) ને \(\mu\) વડેભાગતા \(\frac{{{{f}_{l}}}}{{{{f}_a}}}\,\, = \,\,\, - 8\,\,\,\, \Rightarrow \,\,\,{{f}_{l}}\,\, = \,\, - 8\,\,{{f}_a}\)
પરંતુ હવામાં લેન્સનો ઓપ્ટિકલ પાવર \( - 5D\) છે તેથી \(\,{{f}_a} = \,\,\, - \frac{{100}}{5}\,\,\,cm\,\,\, = \,\, - 20\,\,\,cm\)
\({{f}_{l}} = \,\, - 8\,\, \times \,\,( - 20)\,\,\, = \,\,160\,\,cm\) અથવા \(\,1.6\,\,m\,\,\,\,\)
અને પ્રવાહી માધ્યમમાં લેન્સનો પવાર \({P_{l}}\, = \,\,\frac{\mu }{{{f_\ell }}}\,\, = \,\,\frac{{1.6}}{{1.6}}\,\, = \,\, + \,\,1D\)