\(\mathrm{K}^{\prime}=\mathrm{Ae}^{\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}}=10^{6} \mathrm{K}\)
Ae \(\frac{-\mathrm{E}}{\mathrm{RT}}=10^{6} \times \mathrm{Ae}^{\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}}\)
\(\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}+\ln 10^{6}\)
\(\mathrm{E}_{\mathrm{a}}^{\prime}=\mathrm{E}_{\mathrm{a}}-\mathrm{RT} \ln 10^{6}\)
\(\mathrm{E'}_{\mathrm{a}}-\mathrm{E}_{\mathrm{a}}=-\mathrm{RT} \ln 10^{6}\)
\(=-6 \mathrm{RT} \times 2.303\)
$T$ (in, $K$) $- 769$ , $1/T$ (in, $K^{-1}$ ) $- 1.3\times 10^{-3},$
$\log_{10}K - 2.9\,T$ (in, $K$) $- 667$, $1/T$ (in, $K^{-1}) - 1.5\times 10^{-3}$, $\log_{10}\,K - 1.1$