(આપેલ : $\ln 10=2.303\,\log 2=0.3010$ )
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $300\, {~K}$ પર $120$ મિનિટમાં ${PCl}_{5}$ની સાંદ્રતા પ્રારંભિક સાંદ્રતા $50\, mol\,{L}^{-1}$ થી $10\, {~mol} \,{~L}^{-1}$ થી ઘટે છે. $300\, {~K}$ પર પ્રક્રિયા માટે દર અચળાંક ${X}$ $\times 10^{-2} \,{~min}^{-1}$ છે. $x$ ની કિંમત $......$ છે.
$[$ આપેલ છે: $\log 5=0.6989]$
$\gamma_{1} A +\gamma_{2} B \rightarrow \gamma_{3} C +\gamma_{4} D$
જ્યાં $v_{1}, v_{2}, v_{3}$ અને $v_{4}$ એ પૂર્ણાંક છે. $(i.e.$ $\left.1,2,3,4 \ldots . .\right)$
$10$ સેકન્ડોના અંતરાલ માં $C$ ની સાંદ્રતા $10\,m\,mol\,dm ^{-3}$ માંથી $20\,m\,mol\,dm ^{-3}$ માં ફેરફાર થાય છે.$D$નો દશ્ય થવાનો વેગ એ $B$ના અદશ્ય થવાના વેગ કરતા $1.5$ ગણો છે, ને $A$ ના અદશ્ય થવાના વેગ કરતા બમણો છે.પ્રાયોગિક રીતે $D$ના દશ્ય થવાનો વેગ $9,m\,mol\,dm ^{-3} \,s ^{-1}$ શોધવામાં આવ્યો.તેથી પ્રક્રિયાનો વેગ $\dots\dots\,\,m\,mol$$dm ^{-3} s ^{-1}.$