By reversing the equation (i), we get
\(25 \mathrm{O}_{3(\mathrm{g})} \leftrightharpoons 2 \mathrm{SO}_{2(\mathrm{g})}+\mathrm{O}_{2(\mathrm{g})}\)
Equilibrium constant for this reaction is
\(\mathrm{K}^{\prime}=1 / \mathrm{K}=1 / 278\)
By dividing the equation (ii) by \(2,\) we get desired equation.
\(\mathrm{SO}_{3(\mathrm{g})} \leftrightharpoons \mathrm{SO}_{2(g)}+\frac 12 \mathrm{O}_{2(\mathrm{g})}\)
Equilibrium constant for this reaction
\(K^{\prime \prime}=\sqrt{K^{\prime}}=\sqrt{\frac{1}{K}}=\sqrt{\frac{1}{278}}\)
\(=0.0599 \approx 0.06\)
$Co{O_{2\left( g \right)}} + C{O_{\left( g \right)}} \rightleftharpoons Co{O_{\left( s \right)}} + C{O_{2\left( g \right)}}\,\,;\,K = 490$
તો નીચેની પ્રક્રિયા માટે સંતુલન અચળાંક .... થશે.
$C{O_{2\left( g \right)}} + {H_{2\left( g \right)}} \rightleftharpoons C{O_{\left( g \right)}} + {H_2}{O_{\left( g \right)}}$