\(\mathrm{k}=\frac{1}{\mathrm{t}} \ln \left[\frac{\mathrm{A}_{\mathrm{o}}}{\mathrm{A}_{\mathrm{t}}}\right] \quad \begin{array}{ll}{\text { For } 99 \% \text { completion, }} \\ {[\mathrm{A}]_{\mathrm{o}}=100, \quad \mathrm{[A]}_{\mathrm{t}}=1}\end{array}\)
\(\mathrm{k}=\frac{1}{\mathrm{t}} \ln \left[\frac{100}{1}\right]\)
\(\mathrm{k}=\frac{2.303 \mathrm{log}_{10} 100}{\mathrm{t}}\)
\(\mathrm{k}=\frac{2.303 \times 2}{\mathrm{t}}\)
\(\mathrm{k}=\frac{4.606}{\mathrm{t}}\)
\(t=\frac{4.606}{k}\)
$1$. $[A]$ $0.012$, $[B]$ $0.0351\rightarrow $ પ્રારંભિક દર $ = 0.10$
$2$. $[A]$ $0.024$, $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $= 1.6$
$3$. $[A]$ $0.024$, $[B]$ $0.035\rightarrow $ પ્રારંભિક દર $ = 0.20$
$4$. $[A]$ $0.012$ , $[B]$ $0.070\rightarrow $ પ્રારંભિક દર $ = 0.80$