${N_t}=\frac{{{N_0}}}{{{2^n}}} = \frac{{10}}{{{2^4}}} =0.63\,g$
વિધાન $I$ : $A+B \rightarrow C$ પ્રક્રિયા માટે વેગ નિયમ, વેગ $(r)=k[A]^2[B]$ છે. જ્યારે $A$ અને $B$ એમ બંને ની સાંદ્રતા બમણી કરવામાં આવે છે ત્યારે પ્રક્રિયા વેગ વધી ને " $x$ " ગણો થાય છે.
વિધાન $II$ :
(Image)
આકૃતિ " " $y$ " ક્રમ પ્રક્રિયા માટે સાંદ્રતામાં તફ઼ાવત સામે સમયનો આલેખ દર્શાંવે છે. $x+y$ નું મૂલ્ય . . . . . છે.
$Cl_2(aq)+H_2SO_4(aq) \rightarrow S(s)+2H^+(aq)+2Cl^-$
માટે પ્રક્રિયાવેગ $=K[Cl_2][H_2S]$ છે.
તો આ વેગ સમીકરણ માટે કઈ કાર્યપ્રણાલી સંકળાયેલી છે ?
$A.\,\, Cl_2 + H_2S \rightarrow H^+ + Cl^- + Cl^+ + HS^-\,\, $ (ધીમી)
$Cl^+ +HS^- \rightarrow H^+ +Cl^- +S \,$ (ઝડપી)
$B.\,\, H_2S \rightleftharpoons H^+ + HS^-\,$ (ઝડપી સંતુલન)
$Cl_2^+ + HS^- \rightarrow 2CI^- + H^+ + S\,\, $ (ધીમી)
$[$આપેલ છે :${R}=8.31\, {~J} \,{~K}^{-1} \,{~mol}^{-1} ; \log 6.36 \times 10^{-3}=-2.19$ $\left.10^{-4.79}=1.62 \times 10^{-5}\right]$