(આપેલ : $\ln 2=0.693)$
$2N_2O_5 \rightarrow 4NO_2 + O_2$ નો દર ત્રણ રીતે લખી શકાય.
$\frac{-d[N_2O_5 ]}{dt} = k[N_2O_5]$
$\frac{d[NO_2 ]}{dt} = k'[N_2O_5]\,;$ $\frac{d[O_2 ]}{dt} = k"[N_2O_5]$
$k$ અને $k'$ તથા $k$ અને $k''$ વચ્ચેનો સંબંધ .............
$CH _3 N _2 CH _3( g ) \rightarrow CH _3 CH _3( g )+ N _2( g )$
આ એક પ્રથમક્રમ પ્રક્રિયા છે. $600\, K$ પર સમય સાથે આંશિક દબાણમાં વિવિધતા નીચે આપેલ છે. પ્રક્રિયાનો અર્ધ આયુષ્ય $\times 10^{-5}\, s$ છે. [નજીકનો પૂર્ણાંક]
$1$. $[A]$ $0.01$, $[B]$ $0.01 -$ પ્રક્રિયાનો દર $1.0 \times 10^{-4}$.
$2$. $[A]$ $0.01$, $[B]$ $0.03 - $ પ્રક્રિયાનો દર $9.0 \times 10^{-4}$.
$3$. $[A]$ $0.03$, $[B]$ $0.03 -$ પ્રક્રિયાનો દર $2.70\times 10^{-3}$ તો દર નિયમ સૂચવે કે...