\(d q=\rho d v\)
\(q_{i n}=\int d q=\rho d v\)
\(=\rho_{0}\left(1-\frac{r}{R}\right) 4 \pi r^{2} d r \quad\left(\because d v=4 \pi \mathrm{r}^{2} \mathrm{dr}\right)\)
\(=4 \pi p_{0} \int_{0}^{R}\left(1-\frac{r}{R}\right) r^{2} d r\)
\(=4 \pi \rho_{0} \int_{0}^{R} r^{2} d r-\frac{r^{2}}{R} d r\)
\(=4 \pi \rho_{0}\left[\left[\frac{r^{3}}{3}\right]_{0}^{R}-\left[\frac{r^{4}}{4 R}\right]_{0}^{R}\right]\)
\({=4 \pi \rho_{0}\left[\frac{R^{3}}{3}-\frac{R^{4}}{4 R}\right]}\)
\({=4 \pi \rho_{0}\left[\frac{R^{3}}{3}-\frac{R^{3}}{4}\right]=4 \pi \rho_{0}\left[\frac{R^{3}}{12}\right]}\)
\({q=\frac{\pi \rho_{0} R^{3}}{3}}\)
\(E .4 \pi r^{2}=\left(\frac{\pi \rho_{0} R^{3}}{3 \epsilon_{0}}\right)\)
Electric field outside the ball, \(E=\frac{\rho_{0} R^{3}}{12 \epsilon_{0} r^{2}}\)