$(1)\, r$ ના વધારા સાથે વધે છે $r < R \,$
$(2)\, r$ ના વધારા સાથે ઘટશે $0 < r <$ $\infty$
$(3)\, r$ ના વધારા સાથે ઘટશે $R < r < \infty \,$
$(4)\, r = R$ આગળ તે સતત છે.
$(1)$ બળ રેખા પરના કોઈ પણ બિંદુ આગળ દોરેલો સ્પર્શક એ આપેલ બિંદુ આગળ ધન વિદ્યુતભાર પર લાગતા બળની દિશા આપે છે.
$(2)$ બળ રેખા પરના કોઈ પણ બિંદુ આગળ દોરેલ લંબ એ આપેલ બિંદુ આગળ ધન વિદ્યુતભાર પર લાગતા બળની દિશા આપે છે.
$(3)$ બળની વિદ્યુત રેખાઓ ઋણ વિદ્યુતભાર થી શરૂ કરીને ધન વિદ્યુતભાર પર પૂર્ણ થાય છે.
$(4)$ બળની વિદ્યુત રેખાઓ ધન વિદ્યુતભાર થી શરૂ કરીને ઋણ વિદ્યુતભાર પર પૂર્ણ થાય છે.
સપાટી $s$ માંથી પસાર થતું આ વિદ્યુતભારોની ગોઠવણીને કારણે સંકળાયેલ ફ્લક્સ...........છે.
$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$, $r < R$ માટે
$\rho (r)\,=\,0$, $r\, \ge \,R$ માટે
જ્યાં $r$ એ વિજભાર વિતરણના કેન્દ્રથી અંતર અને $\rho _0$ અચળાંક છે. $(r < R)$ ના અંદરના બિંદુ પાસે વિદ્યુતક્ષેત્ર કેટલું મળે?