\(\therefore \,\,Volume\,of\,n\,droplets = Volume\,of\,big\,drop\)
\(n \times \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {R^3} \Rightarrow n = \frac{{{R^3}}}{{{r^3}}}\) \(...\left( i \right)\)
\(Volume\,of\,big\,drop,\,V = \frac{4}{3}\pi {R^3}\,\) \(...\left( {ii} \right)\)
Initial surface area of \(n\) droplets,
\({A_i} = n \times 4\pi {r^2} = \frac{{{R^3}}}{{{r^3}}} \times 4\pi {r^2}\) \((Using (i))\)
\( = 4\pi \frac{{{R^3}}}{r} = \left( {\frac{4}{3}\pi {R^3}} \right)\frac{3}{r} = \frac{{3V}}{r}\) \((Using (ii))\)
Final surface area of big drop
\({A_f} = 4\pi {R^2} = \left( {\frac{4}{3}\pi {R^3}} \right)\frac{3}{R} = \frac{{3V}}{R}\) \((Using (ii)\)
Decrease in surface area
\(\Delta A = {A_i} - {A_f} = \frac{{3V}}{r} - \frac{{3V}}{R} = 3V\left( {\frac{1}{r} - \frac{1}{R}} \right)\)
\(\therefore \,\,Energy\,released = surface\,tension\)
\( \times Decrease\,in\,surface\,area\)
\( = T \times \Delta A = 3VT\left( {\frac{1}{r} - \frac{1}{R}} \right)\)
કારણ : ટીપાની અંદરનું દબાણ તેની સપાટીના ક્ષેત્રફળના સમપ્રમાણમાં હોય