No of atoms at \(t = 2\,hr\),
\({N_1} = 8 \times {10^{10}}{\left( {\frac{1}{2}} \right)^{\frac{2}{1}}} = 2 \times {10^{10}}\)
No. of atoms at \(t = 4\,hr\),
\({N_2} = 8 \times {10^{10}}{\left( {\frac{1}{2}} \right)^{\frac{4}{1}}} = \frac{1}{2} \times {10^{10}}\)
No. of atoms decayed in given duration
\( = \left( {2 - \frac{1}{2}} \right) \times {10^{10}} = 1.5 \times {10^{10}}\)
$X \stackrel{a}{\longrightarrow} Y$
$Y \underset{2 \beta}{\longrightarrow} Z$
, ત્યારે
$_1{H^2}{ + _1}{H^2}{ \to _2}H{e^4} + Q$