so rate $=2^{n}=2^{1}=2$
When temperature is increased from $10\,^{o} \mathrm{C}$ to $100\,^{o} \mathrm{C},$ change in temperature
${=100-10=90\,^{o} \mathrm{C}}$
${n=9}$
So, rate $=2^{9}=512$ times
Alternate method with every $10^{o}$ rise in temperature, rate becomes double,
so $\frac{r^{\prime}}{r}=2^{\left(\frac{100-10}{10}\right)}=2^{9}=512$ times.
$\frac{d[NH_3]}{dt} = 2 \times 10^{-4} \, mol \,L^{-1} \, s^{-1}$ હોય, તો $\frac{-d[H_2]}{dt}$ ની કિંમત ............. $mol \,L^{-1} \, s^{-1}$ થશે.
