$k=\frac{2.0303}{t} \log \frac{a}{a-x}$
$\quad k=\frac{2.303}{40} \log \frac{0.1}{0.025}$
$=\frac{2.303}{40} \log \frac{0.1}{0.025}$
$=\frac{2.303 \times 0.6020}{40}$
$=3.47 \times 10^{-2}$
$R=K(A)^{1}=3.47 \times 10^{-2} \times 0.01$
$=3.47 \times 10^{-4}$
$-\frac{d[{{N}_{2}}{{O}_{5}}]}{dt}={{K}_{1}}[{{N}_{2}}{{O}_{5}}]$ ,
$\frac{d[N{{O}_{2}}]}{dt}={{k}_{2}}[{{N}_{2}}{{O}_{5}}]$ ,
$\frac{d[{{O}_{2}}]}{dt}={{K}_{3}}[{{N}_{2}}{{O}_{5}}]$
તો $K_1$, $K_2$ અને $K_3 $ વચ્ચેનો સંબંધ શું થાય?
$C{l_{2(aq)}} + {H_2}{S_{(aq)}} \to {S_{(S)}} + 2H_{(aq)}^ + + 2Cl_{(aq)}^ - $ માટે વેગ $= K[Cl_2][H_2S]$ છે તો કયો તબક્કો વેગ સમીકરણ સાથે સુસંગત છે ?
$(A)$ $Cl_2 + H_2S \rightarrow H^++ Cl^- + Cl^+ + HS^-$ (ધીમો); $ Cl^+ + HS^- \rightarrow H^++ Cl^- + S$ (ઝડપી)
$ (B)$ $H_2S $ $\rightleftharpoons$ $ H^+ + HS^-$ (ઝડપી સંતુલન) ; $Cl_2 + HS^- \rightarrow 2Cl^- + H^+ + S $ (ધીમો)
$[X]$ $0.1\,M$, $[Y]$ $0.1\,M$ દર $\rightarrow 0.002\,Ms^{-1}$
$[X]$ $0.2\,M$, $[Y]$ $0.1\,M$ દર $\rightarrow 0.002\,Ms^{-1}$
$[X]$ $0.3\,M$, $[Y]$ $0.2\,M$ દર $\rightarrow 0.008\,Ms^{-1}$
$[X]$ $0.4\,M$, $[Y]$ $0.3\,M$ દર $\rightarrow 0.018\,Ms^{-1}$
તો દર નિયમ ......