so rate \(=2^{n}=2^{1}=2\)
When temperature is increased from \(10\,^{o} \mathrm{C}\) to \(100\,^{o} \mathrm{C},\) change in temperature
\({=100-10=90\,^{o} \mathrm{C}}\)
\({n=9}\)
So, rate \(=2^{9}=512\) times
Alternate method with every \(10^{o}\) rise in temperature, rate becomes double,
so \(\frac{r^{\prime}}{r}=2^{\left(\frac{100-10}{10}\right)}=2^{9}=512\) times.
$C{l_{2(aq)}} + {H_2}{S_{(aq)}} \to {S_{(S)}} + 2H_{(aq)}^ + + 2Cl_{(aq)}^ - $ માટે વેગ $= K[Cl_2][H_2S]$ છે તો કયો તબક્કો વેગ સમીકરણ સાથે સુસંગત છે ?
$(A)$ $Cl_2 + H_2S \rightarrow H^++ Cl^- + Cl^+ + HS^-$ (ધીમો); $ Cl^+ + HS^- \rightarrow H^++ Cl^- + S$ (ઝડપી)
$ (B)$ $H_2S $ $\rightleftharpoons$ $ H^+ + HS^-$ (ઝડપી સંતુલન) ; $Cl_2 + HS^- \rightarrow 2Cl^- + H^+ + S $ (ધીમો)
| $[A] (mol\,L^{-1})$ | $[B] (mol\,L^{-1})$ | પ્રક્રિયાનો પ્રારંભિક વેગ $(mol\, L^{-1}\,s^{-1} )$ |
| $0.05$ | $0.05$ | $0.045$ |
| $0.10$ | $0.05$ | $0.090$ |
| $0.20$ | $0.10$ | $0.72$ |
| $[A] (mol\,L^{-1})$ | $[B] (mol\,L^{-1})$ | પ્રક્રિયાનો પ્રારંભિક વેગ $(mol\, L^{-1}\,s^{-1} )$ |
| $0.05$ | $0.05$ | $0.045$ |
| $0.10$ | $0.05$ | $0.090$ |
| $0.20$ | $0.10$ | $0.72$ |
[અહી આપેલ $\left.\log _{10} 2=0.3010\right]$