समान आवर्तकाल, एक दूसरे से $90^{\circ}$ के कोण पर तथा $\pi$ कलान्तर की दो सरल आवर्तगतियों के संयोजन से कण का विस्थापन होता है-
[1990]
Download our app for free and get started
(c) $x = a \sin \omega t$
और $y = b \sin (\omega t +\pi)=- b \sin \omega t$ या $\frac{ x }{ a }=-\frac{ y }{ b }$ या $y =-\frac{ b }{ a } x$
अतः यह समीकरण सरल रेखा को प्रदर्शित करती है।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक सरल लोलक का आयाम वास्तविक आयाम का $1 /$ 3 भाग हो जाता है जब वह 100 दोलन पूरे कर लेता है। जब वह 200 दोलन पूरे कर लेता है तो उसका आयाम $S$ भाग हो जाता है जहां $S$ का मान होगा-
एक स्प्रिंग से लटके द्रव्यमान का आवर्तकाल $T$ है। यदि स्प्रिंग को चार बराबर भागों में बांट दिया जाए व समान द्रव्यमान को किसी एक भाग से लटकाये तो आवर्तकाल होगा :
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक 200 न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये?( मान लो $g =10$ मी $/$ से $^2$ )
एक सरल लोलक का आयाम तथा कोणीय वेग क्रमशः $a$ तथा $\omega$ है। माध्य स्थिति से $x$ दूरी पर इसकी गतिज ऊर्जा $T$ तथा स्थितिज ऊर्जा $V$ है तो $T$ तथा $V$ का अनुपात होगा
एक कण का द्रव्यमान $m$ है। इसे विराम अवस्था से मोचित किया गया है और यह आरेख मे दिखाये गये अनुसार एक परवलीय मार्ग पर चलता है। यह मानते हुए कि कण का मूल स्थिति से विस्थापन कम है, कौन से ग्राफ कण की स्थिति को समय के फलन के रूप में सही दर्शाता है?
एक कण पर रेस्टोरिंग बल उसके विस्थापन के समानुपाती है तथा घर्षण बल उसके वेग के समानुपाती है जबकि उस पर $F \sin \omega t$ का बल कार्य करता है। यदि कण का आयाम $\omega=\omega_1$ पर अधिकतम हो तथा कण की ऊर्जा $\omega=\omega_2$ पर अधिकतम हो तो