एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक 200 न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये?( मान लो $g =10$ मी $/$ से $^2$ )
[2007]
Download our app for free and get started
(a) द्रव्यमान $m$ पैन को उस वक्त छोड़ेगा जब यह अपने ऊपरी सीमांत बिन्दु पर होगा तथा पैन अपने माध्य-बिन्दु पर वापस लौट आयेगा। इस स्थिति में द्रव्यमान पर कुल अभिलम्ब प्रतिक्रिया शून्य होगी।
अत : $mg - ka =0$, जहाँ $a$, आयाम की न्यूनतम मान है।
$
\therefore a =\frac{ mg }{ k }=\frac{2 \times 10}{200}=\frac{1}{10} m =10 cm \text {. }
$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक सरल लोलक का आयाम तथा कोणीय वेग क्रमशः $a$ तथा $\omega$ है। माध्य स्थिति से $x$ दूरी पर इसकी गतिज ऊर्जा $T$ तथा स्थितिज ऊर्जा $V$ है तो $T$ तथा $V$ का अनुपात होगा
किसी नगण्य द्रव्यमान के स्प्रिंग से लटकाये गये $M$ द्रव्यमान का दोलनकाल $T$ है। यदि इसके साथ ही एक अन्य $M$ द्रव्यमान लटका दिया जाय तो दोलनकाल हो जायेगा
किसी सरल आर्वत तरंग का समीकरण $ y=3 \sin \frac{\pi}{2}(50 t-x) $ जहाँ $x$ तथा $y$ मीटर में और $t$ सेकंड में है तो, अधिकतम कण $-$ वेग तथा तरंग वेग का अनुपात होगा :
एक $m$ द्रव्यमान का पिण्ड ऊर्ध्वाधरत सरल: आवर्तगति करता है। जब द्रव्यमान को स्प्रिंग $A$ से लटकाया जाता है तो उसका आवर्तकाल $t_1$ तथा $B$ से लटकाने पर आवर्तकाल $t _2$ है। यदि $A$ तथा $B$ को दिये गये चित्र की तरह जोड़ा जाए तो आवर्तकाल $t _0$ दिया जाता है