But according to problem, volume of sphere = Volume of cube ==> \(\frac{4}{3}\pi {r^3} = {a^3}\)
==> \(a = {\left( {\frac{4}{3}\pi } \right)^{1/3}}r\) Substituting the value of a in equation \((i)\) we get
\(\frac{{{Q_{sphere}}}}{{{Q_{cube}}}} = \frac{{4\pi {r^2}}}{{6{a^2}}} = \frac{{4\pi {r^2}}}{{6{{\left\{ {{{\left( {\frac{4}{3}\pi } \right)}^{1/3}}r} \right\}}^2}}}\) \( = \frac{{4\pi {r^2}}}{{6\,{{\left( {\frac{4}{3}\pi } \right)}^{2/3}}{r^2}}} = {\left( {\frac{\pi }{6}} \right)^{1/3}}:1\)