\(F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}\)
In equilibrium
\(T \cos \theta=m g\) \(...(i)\)
\(T \sin \theta=F\) \(...(ii)\)
Divide \((ii)\) by \((i),\) we get,
\(\tan \theta=\frac{F}{m g}=\frac{\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}}{m g}\)
From figure \((a),\)
\(\frac{r / 2}{y}=\frac{\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}}{m g}\) \(....(iii)\)
\(\tan \theta^{\prime}=\frac{\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{\prime 2}}}{m g}\)
From figure \((b)\)
\(\frac{r^{\prime} / 2}{y / 2}=\frac{\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{\prime 2}}}{m g} \ldots(\mathrm{iv})\)
Divide \((iv)\) by \((iii),\) we get
\(\frac{2 r^{\prime}}{r}=\frac{r^{2}}{r^{\prime 2}} \Rightarrow r^{\prime 3}=\frac{r^{3}}{2}\)
\(\Rightarrow r^{\prime}=\frac{r}{\sqrt[3]{2}}\)