સમીકરણ ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$ નો ઉકેલ મેળવો.
  • A${\log _9}(9/\sqrt 8 )$
  • B${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$
  • C${\log _e}(9/\sqrt 8 )$
  • D
    એકપણ નહીં
Difficult
Download our app for free and get startedPlay store
b
(b) \({9^x} - {2^{x + (1/2)}} = {2^{x + (3/2)}} - {3^{2x - 1}}\)

 ==> \({3^{2x}} + {1 \over 3}{.3^{2x}} = {2.2^{x + {1 \over 2}}} + {2^{x + {1 \over 2} - 2}}\)

==> \(4\,.\,{3^{2x - 1}} = 3.\,{2^{x + {1 \over 2}}}\) ==> \({3^{2x - 2}} = {2^{x + {1 \over 2} - 2}}\)

==> \({3^{2x - 2}} = {2^{x - {3 \over 2}}}\) ==> \({\left( {{9 \over 2}} \right)^{x - 1}} = {2^{ - 1/2}}\)

==> \((x - 1)\,{\log _{9/2}}9/2 = - {1 \over 2}{\log _{9/2}}2\)

==> \(x - 1 = - {1 \over 2}{\log _{9/2}}2\)

==> \(x = 1 - {\log _{9/2}}\sqrt 2 = {\log _{9/2}}9/2 - {\log _{9/2}}\sqrt 2 \)

==> \(x = {\log _{9/2}}(9/2\sqrt 2 )\);

\(\therefore x = {\log _{9/2}}(9/\sqrt 8 )\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    જો ${{3x + a} \over {{x^2} - 3x + 2}} = {A \over {(x - 2)}} - {{10} \over {x - 1}}$, તો
    View Solution
  • 2
    ${{x + 1} \over {(x - 1)\,(x - 2)\,(x - 3)}} = $
    View Solution
  • 3
    જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $
    View Solution
  • 4
    જો $a = \sqrt {(21)} - \sqrt {(20)} $ અને $b = \sqrt {(18)} - \sqrt {(17),} $ તો
    View Solution
  • 5
    જો ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ તો $xyz=$
    View Solution
  • 6
    જો $a = {\log _{24}}12,\,b = {\log _{36}}24$ અને $c = {\log _{48}}36$ તો $1+abc = . . . .$
    View Solution
  • 7
    ${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $
    View Solution
  • 8
    ${\log _2}(x + 5) = 6 - x$ ના ઉકેલની સંખ્યા મેળવો.
    View Solution
  • 9
    $\log ab - \log |b| = $
    View Solution
  • 10
    જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $
    View Solution