$N_{2}=3.0 \times 10^{-3} M$
$O_{2}=4.2 \times 10^{-3} M$
અને $N O=2.8 \times 10^{-3} M$
આપેલ પ્રક્રિયા માટે બંધ કરેલા વાસણમાં $800 \,K$ અને $1$ $atm$ દબાણે $K_{p}$ ......... $atm$ હશે ?
$N_{2}(g)+O_{2}(g) \rightleftharpoons 2 N O(g)$
$O_{2}=4.2 \times 10^{-3} M$
and $N O=2.8 \times 10^{-3} M$
For the given reaction,
$N_{2}(g)+O_{2}(g) \rightleftharpoons 2 N O(g)$
equilibrium constant $K_{C}$ can be written as
$K_{C}=\frac{[N O]^{2}}{\left[N_{2}\right]\left[O_{2}\right]}$
$\therefore K_{C}=\frac{\left(2.8 \times 10^{-3} M\right)^{2}}{\left(3.0 \times 10^{-3} M\right)\left(4.2 \times 10^{-3} M\right)}=0.622$
$\because K_{p}=K_{C} \cdot(R T)^{\Delta n}$
$\Delta n=$ Number of moles of gaseous products number of moles of gaseous reactants
$\Delta n=2-2=0$
$\therefore K_{p}=K_{C^{.}}(R T)^{o}$
$K_{p}=K_{C}$ or, $K_{p}=0.622$ $atm$
$(a) N_2O_4 $ $\rightleftharpoons$ $ 2NO_2$
$(b) 2SO_2 + O_2 $ $\rightleftharpoons$ $ 2SO_3$
$(c) X + Y $ $\rightleftharpoons$ $ 4Z$
$(d) A + 3B $ $\rightleftharpoons$ $ 7C$
(અહીં : $SrCO_{3(s)} \rightleftharpoons SrO_{(s)}+ CO_{2(g)} \,, K_p=1.6\,atm$)
$NO_{(g)} + \frac{1}{2}{O_2} \rightleftharpoons N{O_2}_{(g)}$
$2N{O_2}_{(g)} \rightleftharpoons 2NO_{(g)} + {O_2}_{(g)}$
$(I)\,\,\,\,{N_2} + 2{O_2} \rightleftharpoons 2N{O_2}$
$(II)\,\,\,\,2N{O_2} \rightleftharpoons {N_2} + 2{O_2}$
$(III)\,\,\,\,N{O_2} \rightleftharpoons \frac{1}{2}{N_2} + 2{O_2}$
તો નીચેના પૈકી ક્યો સંબંધ સાચો છે ?