\(O_{2}\) at \(STP\)
Thus, \(5600 \mathrm{mL} O_{2}\) means \(=\frac{5600}{22400} \mathrm{mol} O_{2}\)
\(=\frac{1}{4} m o l O_{2}\)
\(\therefore\) Weight of \(\mathrm{O}_{2}=\frac{1}{4} \times 32=8 \mathrm{g}\)
According to problem,
Equivalents of \(\mathrm{Ag}=\) Equivalents of \(\mathrm{O}_{2}\)
\(\begin{array}{l} {=\frac{\text {Weight of } A g}{\text {Equivalent wor}} \mathrm{Ag}} \\ {=\frac{\mathrm{W}_{O_{2}}}{\text { Equivalent weight of } O_{2}}} \end{array}\)
\(\frac{W_{A g}}{\frac{M_{g}}{1}}=\frac{W_{O_{2}}}{\frac{M_{0_{2}}}{4}}\)
\(\therefore \quad \frac{W_{A g}}{108} \times 1=\frac{8}{32} \times 4\)
\(\left[\because 2 H_{2} O \rightarrow O_{2}+4 H^{+}+4 e^{-}\right]\)
\(\Rightarrow \quad W_{A g}=108 g\)
આપેલ $\left( E _{ Cu ^{2+} / Cu ^{+}}^{0}=0.16 V \right.$ $,E _{ Cu ^{+} / Cu }^{0}=0.52 V,$ $\left.\frac{ RT }{ F }=0.025\right)$