તાપમાન $\quad$ સંતુલન અચળાંક
$\begin{array}{ll} T _{1}=25^{\circ} C & K _{1}=100 \\ T _{2}=100^{\circ} C & K _{2}=100\end{array}$
$T _{1}$ તાપમાને $\Delta H ^{\circ}, \Delta G ^{\circ}$ના મૂલ્યો અને $T _{2}$ તાપમાને $\Delta G ^{\circ}$નું મૂલ્ય ($kJ\, mol ^{-1}$ માં) અનુક્રમે , નજીક હશે?
$\left[\right.$ ઉપયોગ કરો : $\left. R =8.314\, JK ^{-1} mol ^{-1}\right]$
\(\ln (10)=\frac{\Delta H ^{\circ}}{ R }\left\{\frac{1}{298}-\frac{1}{373}\right\}\)
\(373 \times 298 \times R \times 2.303=\Delta H ^{\circ}=28.37 kJ mol ^{-1}\)
\(\Delta G _{ T _{1}}^{\circ}=- RT _{1} \ln \left( K _{1}\right)=-298 R \ln (10)=-5.71 k mol ^{-1}\)
\(\Delta G _{ T _{2}}^{\circ}=- RT _{2} \ln \left( K _{2}\right)=-373 R \ln (100)\)
\(=-14.283 kJ / mol\)
$Mn^{2+} +2e- \rightarrow Mn;\, E^o = -1.18\,V$
$2(Mn^{3+} +e^- \rightarrow Mn^{2+} )\,;\,E^o=+1.51\,V$
તો $3Mn^{2+} \rightarrow Mn+ 2Mn^{3+}$ માટે $E^o$ કેટલો થશે ?