\(\alpha {\text{ = 3t - }}{{\text{t}}^{\text{2}}}\,\, \Rightarrow \,\,\,\frac{{d\omega }}{{dt}}\,\, = \,\,\,3t\,\, - {t^2}\,\,\)
\( \Rightarrow \,\,\,d\omega \,\, = \,\,(3t\,\, - \,\,{t^2})\,\,dt\,\,\, \Rightarrow \,\,\int\limits_0^\omega {d\omega } \,\, = \,\,\int\limits_0^2 {\,\,(3t - {t^2})\,dt} \)
\( \Rightarrow \,\,\,\omega \,\, = \,\,\left( {\frac{{3{t^2}}}{2} - \,\,\frac{{{t^3}}}{3}} \right)_0^2\,\,\, = \,\,6\,\,\, - \,\,\frac{8}{3}\,\, = \,\,\,\,\frac{{10}}{3}\,\,rad\,/\,\sec \)
અહીં \(2\ sec\). પછી કોઇ કોણીય પ્રવેગ નથી.\(6\ sec\) પછી કોણીય વેગ તેટલો જ રહે છે જે \(10/3\ rad/ sec\) છે