\(\oint_{\mathrm{S}} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{Q}{\epsilon_{0}}\)
\(\therefore \mathrm{E} \times 4 \pi \mathrm{r}^{2}=\frac{\mathrm{Q}+4 \pi \mathrm{ar}^{2}-4 \pi \mathrm{Aa}^{2}}{\epsilon_{0}}\)
\(\rho=\frac{\mathrm{d} \mathrm{r}}{\mathrm{d} \mathrm{v}}\)
\(Q=\rho 4 \pi r^{2}\)
\(\mathrm{Q}=\int_{\mathrm{a}}^{\mathrm{A}} \frac{\mathrm{A}}{\mathrm{r}} 4 \pi \mathrm{r}^{2} \mathrm{dr}=4 \pi \mathrm{A}\left[\mathrm{r}^{2}-\mathrm{a}^{2}\right]\)
\(\mathrm{E}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{\mathrm{Q}-4 \pi \mathrm{Aa}^{2}}{\mathrm{r}^{2}}+4 \pi \mathrm{A}\right]\)
For \(\mathrm{E}\) to be independent of \('{r}'\)
\(\mathrm{Q}-2 \pi \mathrm{Aa}^{2}=0\)
\(\therefore A=\frac{Q}{2 \pi a^{2}}\)