\(=\) charge \(\times\) potential diff. in volt
\({{\text{E}}_{{\text{electron }}}} = {q_{\text{e}}}{\text{V}}\) and \({{\text{E}}_{{\text{proton }}}} = {q_{\text{p}}}4{\text{V}}\)
de-Broglie wavelength
\(\lambda=\frac{\mathrm{h}}{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}\)
\(\lambda_{\mathrm{c}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{m}_{\mathrm{e}} \mathrm{e} \mathrm{V}}}\) and \(\lambda_{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{m}_{\mathrm{p}} \mathrm{e} 4 \mathrm{V}}}\)
\({\text{(}}\because {q_c} = {q_p}{\text{)}}\)
\(\therefore \frac{{{\lambda _{\text{c}}}}}{{{\lambda _{\text{P}}}}} = \frac{{\frac{{\text{h}}}{{\sqrt {2{{\text{m}}_{\text{e}}}{\text{eV}}} }}}}{{\frac{{\text{h}}}{{\sqrt {2{{\text{m}}_p}{\text{e4V}}} }}}}\) \( = \sqrt {\frac{{2{{\text{m}}_p}{\text{e4V}}}}{{2{{\text{m}}_e}{\text{eV}}}}} \)
\( = 2\sqrt {\frac{{{{\text{m}}_{\text{p}}}}}{{{{\text{m}}_{\text{e}}}}}} \)