$R=50 \Omega$
$\kappa=1.45 S m^{-1}=1.4 \times 10^{-2} S \mathrm{cm}^{-1}$
Now, $R=\rho {\frac{\ell}{a}}=\frac{1}{\kappa} \times \frac{\ell}{a}$
$\Rightarrow \frac{\ell}{a}=R \times \kappa=50 \times 1.4 \times 10^{-2}$
For $0.5 M$ solution
$R=280 \Omega ; \kappa=?$
$\frac{\ell}{a}=50 \times 1.4 \times 10^{-2}$
$\Rightarrow R=\rho \frac{\ell}{a}=\frac{1}{\kappa} \times \frac{\ell}{a}$
$\Rightarrow \quad \kappa=\frac{1}{280} \times 50 \times 1.4 \times 10^{-2}$
$=\frac{1}{280} \times 70 \times 10^{-2}=2.5 \times 10^{-3} S c m^{-1}$
Now, $\Lambda_{m}=\frac{\kappa \times 1000}{M}=\frac{2.5 \times 10^{-3} \times 1000}{0.5}$
$=5 S c m^{2} m o l^{-1}=5 \times 10^{-4} S m^{2} m o l^{-1}$
$298\,K$ પર જ્યારે $\frac{\left[M^*(a q)\right]}{\left[M^{3 *}(a q)\right]}=10^a$ હોય ત્યારે આપેલ કોષ નો $E_{\text {cell }}$ એ $0.1115\,V$ છે. $a$ નું મૂલ્ય $............$ છે.આપેલ : $E _{ M }^\theta{ }^{3+} M ^{+}=0.2\,V$
$\frac{2.303\,R T}{F}=0.059\,V$
$Cu(s) + 2Ag{^+}_{(aq)} \to Cu^{+2}_{(aq)} + 2Ag(s)$
માટે સંતુલન અચળાંક $K_C = 10 \times 10^{15}$ છે, તો $298\, K$ ને $E_{cell}^o$ નું મૂલ્ય કેટલુ થશે?
[${2.303\,\frac{{RT}}{F}}$ એ $298\,K$ $=0.059\,V$]