\(x=4 \cos (\omega t) \quad y=4 \sin (\omega t)\)
Eliminate ' \(t\) ' to find relation between \(x\) and \(y\)
\(x^{2}+y^{2}=y^{2} \cos ^{2} \omega t+y^{2} \sin ^{2} \omega t=4^{2}\)
\(x^{2}+y^{2}=4^{2}\)
આપેલ : $1\, {ly}=9.46 \times 10^{15} \,{m},$ $\, {AU}=1.5 \times 10^{11}\, {m}$