since \(\Delta G=\Delta H-T \Delta S\)
so at equilibrium \(\Delta H-T \Delta S=0\)
or \(\quad \Delta H=T \Delta S\)
For the reaction
\(\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}\)
\(\Delta H=-30 \,k J\) (given)
Calculating \(\Delta S\) for the above reaction, we get
\(\Delta S=50-\left[\frac{1}{2} \times 60+\frac{3}{2} \times 40\right] \,J K^{-1}\)
\(=50-(30+60) \,J \,K^{-1}\)
\(=-40 \,J \,K^{-1}\)
At equilibrium, \(T \Delta S=\Delta H\)
\([\text { as } \quad \Delta G=0]\)
\(\therefore \quad T \times(-40)=-30 \times 1000\)
\([\text { as } 1\, k J=1000 \,J]\)
\(\quad T=\frac{-30 \times 1000}{-40}=\quad 750 \,K\)