Current flowing through the wire, \(I=1\, A\)
Speed of the frame, \(\mathrm{v}=10\, \mathrm{ms}^{-1}\)
Side of square loop, \(l=10\, \mathrm{cm}\)
Distance of square frame from current carrying
wires \(x=10\, \mathrm{cm}\)
We have to find, \(e.m.f\) inducede =?
According to Biot-Savart's law
\(B = \frac{{{\mu _0}}}{{4\pi }} \cdot \frac{{Idl\sin \,\theta }}{{{x^2}}}\)
\( = \frac{{4\pi \times {{10}^{ - 7}}}}{{4\pi }} \times \frac{{1 \times {{10}^{ - 1}}}}{{{{({{10}^{ - 1}})}^2}}}\)
\(=10^{-6}\)
Induced \(e.m.f.\) \(\mathrm{e}=\mathrm{Blv}\)
\(=10^{-6} \times 10^{-1} \times 10\)
\(=1 \,\mu v\)