Thermal expansion would be \(=L \propto \Delta T\)
Where \(L=\) original length
\(\alpha=\) coefficient of linear expansion
\(\Delta T=\) Change in temperature
So substituting values
\(\Delta L=2 \times 10^{-6} \times 80\)
\(\Delta L=1.6 \times 10^{-4} \,m\)
Now \(\Delta L=\frac{F L}{A Y}\)
\(\frac{\Delta L \times A Y}{L}=F\)
Substitute values
\(\frac{1.6 \times 10^{-4} \times 10^{10} \times 1}{2 \times 10000}=F\)
\(80 \,N = F\)