\(\therefore \,\,0\,\, = \,\,2\pi n\, - \,\,\alpha t\,\, \Rightarrow \,\,t\,\, = \,\,\frac{{2\pi n}}{\alpha }\,\, = \,\,\frac{{2\pi \, \times \,240}}{{\pi \,\, \times \,\,60}}\,\, = \,\,8\,\,s\)
હવે, \(\begin{gathered}
\because \,\,\omega _2^2\,\, = \,\,\,\omega _1^2\,\, - \,\,2\alpha \,\theta \,\,\,\,\,\,\,\therefore \,\,0\,\, = \,\,\omega _1^2\,\, - \,\,2\,\alpha \,\theta \hfill \\
\Rightarrow \,\,\,\theta \,\, = \,\,\,\frac{{\omega _1^2}}{{2\alpha }}\,\, = \,\,\,\frac{{4{\pi ^2}{n^2}}}{{2\alpha }}\,\, = \,\,\,\frac{{4{\pi ^2}}}{{2\pi }}\,\, \times \,\,\,{\left( {\frac{{240}}{{60}}} \right)^2}\, = \,\,\,32\,\pi \hfill \\
\end{gathered} \)
\(\, \Rightarrow \) ભ્રમણ ની સંખ્યા \( = \,\, \frac{\theta }{{2\pi }}\,\, = \,\,\,\frac{{32\pi }}{{2\pi }}\,\, = \,\,\,16\)