\(Z=\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}} ;\) where \(X_{C}=\) capacitive reactance and \(X_{L}=\) inductive reactance.
Also \(X_{C}=\frac{1}{\omega C}\) and \(X_{L}=\omega L\)
\(\therefore \quad z=\sqrt{(50)^{2}+\left(\frac{1}{314 \times 100 \times 10^{-6}}-314 \times 20 \times 10^{-3}\right)^{2}}\)
or \(\quad Z=56\, \Omega\)
The power loss in the circuit is \(P_{a v}=\left(\frac{V_{r m s}}{Z}\right)^{2} R\)
\(\therefore \quad P_{a v}=\left(\frac{10}{(\sqrt{2}) 56}\right)^{2} \times 50=0.79\, \mathrm{W}\)
$I=5 \sin (120 \pi t) \,A$ શૂન્યથી શરૂ કરી પ્રવાહને મહત્તમ (પીક) મૂલ્ય સુધી પહોંચતા કેટલો સમય લાગશે ?