by,
\(a=\frac{g \sin \theta}{1+\frac{k^{2}}{r^{2}}}\)
The moment of inertia of the sphere is given by,
\(I=\frac{2}{5} m r^{2}\)
\(=m k^{2}\)
Consider above,
\(\frac{k^{2}}{r^{2}}=\frac{2}{5}\)
Use the equation,
\(v^{2}=2 a s\) \(...(I)\)
Substitute \(2.8\) for \(v, \frac{2}{5}\) for \(\frac{k^{2}}{r^{2}}, 30^{\circ}\) for \(\theta\) and \(\frac{g \sin \theta}{1+\frac{k^{2}}{r^{2}}}\) for \(a\) in
equation \((I)\)
\(2.8^{2}=2\left(\frac{g \sin 30^{\circ}}{1+\frac{2}{5}}\right) s\)
\(=2\left(\frac{2(10)\left(\frac{1}{2}\right)}{\frac{7}{2}}\right)\)
\(s=2.8^{2}\left(\frac{7}{20}\right)\)
\(=2.744 m\)
$\overrightarrow{{r}}=10 \alpha {t}^{2}\, \hat{{i}}+5 \beta({t}-5)\, \hat{{j}}$
જ્યાં $\alpha$ અને $\beta$ પરિમાણવાળા અચળાંક છે. કણનું કોણીય વેગમાન ${t}=0$ સમયે હોય તેટલું ફરીથી $t=$ .....$seconds$ સમયે થશે.