a \(I =\frac{ m \ell^{2}}{12}= mk ^{2} \Rightarrow k ^{2}=\frac{\ell^{2}}{12} \Rightarrow k =\frac{\ell}{\sqrt{12}}=\frac{\ell}{2 \sqrt{3}}=\frac{10 \sqrt{3}}{2 \sqrt{3}}=5\)
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
બે શંકુઓને બિંદુ $O$ સાથે જોડીને એક રોલર બનાવવામાં આવેલ છે જેને બે પાટા $AB$ અને $CD$ પર અસંમિત રીતે રાખેલ છે. (જુઓ આકૃત્તિ ), રોલરની અક્ષ $CD$ ને લંબ તથા કેન્દ્ર $O$ એ $AB$ અને $CD$ ને જોડતી રેખાની મધ્યમાં છે. હલકો ધકકો દેતાં રોલર આકૃત્તિમાં બતાવ્યા પ્રમાણે ગતિ કરવાનું શરૂ કરે છે. જયાં કેન્દ્ર $O$ $ CD $ ને સમાંતર ગતિ કરે છે.આમ ગતિ કરતાં રોલર
બે તકતી તેની અક્ષને અનુલક્ષીને સમાન દિશામાં ભ્રમણ કરે છે.પ્રથમ તકતીની જડત્વની ચાક્માત્રા $0.1 \;kg \cdot m ^{2}$ અને કોણીય ઝડપ $10\; rad \,s^{-1}$ છે,બીજી તકતીની જડત્વની ચાક્માત્રા $0.2 \;kg - m ^{2}$ અને કોણીય ઝડપ $5\; rad \,s ^{-1}$ છે,તેમની અક્ષને જોડીને એક તકતી બનાવતા તંત્રની ગતિઊર્જા ...........$J$
$2\ kg$ ના દળોને $1/4\ m $ લાંબા સ્પોક્સ વડે ધરી સાથે આકૃતિ $A$ માં દર્શાવ્યા પ્રમાણે જોડેલા છે. $24\ N$ નું બળ $ F$ એ $1/2\ m$ લાંબા હાથના છેડે લગાવતા કોણીય પ્રવેગ $\alpha$ પેદા થાય છે. $\alpha$ નું મૂલ્ય ........ $ rad/s^2$
અક તંત્રમાં $m_1=3 \mathrm{~kg}$ અને $m_2=2 \mathrm{~kg}$ દળ ધરાવતા બે કણોને એકબીજાથી અમુક અંતરે રાખવામાં આવ્યા છે. $m_1$ દળ ધરાવતા કણને તંત્રના દ્રવ્યમાન કેન્દ્ર તરફ $2 \mathrm{~cm}$ જેટલો ખસેડવામાં આવે છે. તંત્રના દ્રવ્યમાન કેન્દ્રને તેના મૂળ સ્થાન ઉપર જ રાખવા માટે $m_2$ દળ ધરાવતા કણને દ્રવ્યમાન કેન્દ્ર તરફ. . . . . $cm$ અંતરથી ખસેડવો પડશે.
એક નક્કર પદાર્થ સ્થિર અક્ષને અનુલક્ષીને એવી રીતે ચાકગતિ કરે છે કે જેથી કરીને તેનો કોણીય વેગ $\theta$ પર $\omega=k \theta^{-1}$ મુજબ આધાર રાખે છે, કે જ્યાં $k$ એ ધન અચળાંક છે. જો $t=0$ પર $\theta=0$ હોય તો, $\theta$ નો સમય પર આધાર કેવી રીતે રજૂ કરવામાં આવે છે?
$100\,kg$ દળનો માણસ એ $200\,kg$ ના પ્લેટફોર્મ પર ઉભો છે. જે સૂવાળી બરફની સપાટી પર છે. જો માણસ પ્લેટફોર્મ પર $30\,m / s$ ના વેગથી ગતિ કરે છે, તો $..........m/s$ વેગથી પ્લેટફોર્મ એ બરફની સાપેક્ષમાં પાછુ ખસશે.
એક નિયમિત સળિયો જેની લંબાઈ $ l $ અને દળ $m $ છે, તે બિંદુ $ A$ ને અનુલક્ષીને ભ્રમણ કરે છે. સ્થિર સળિયાને સમક્ષિતિજ સ્થિતિમાંથી મુક્ત કરવામાં આવે છે. બિંદુ $A$ ને અનુલક્ષીને સળિયાની જડત્વની ચાકમાત્રા $ ml^2/3$ હોય, તો તેનો પ્રારંભિક કોણીય પ્રવેગ .......