\(\mathrm{Wg}=\Delta \mathrm{KE}\)
\(\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{gh}=\frac{1}{2}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{V}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}\)
\(\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{gh}=\frac{1}{2}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)(\omega \mathrm{R})^{2}+\frac{1}{2} \mathrm{I} \omega^{2}\)
\(\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{gh}=\frac{\omega^{2}}{2}\left[\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{R}^{2}+\mathrm{I}\right]\)
\(\omega=\sqrt{\frac{2\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{gh}}{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{R}^{2}+\mathrm{I}}}\)