\(mv\,\, = \,\,m\,\, \times \,\,0\,\, + \,\,MV\,\, \Rightarrow \,\,\,V\,\, = \,\,\frac{{mv}}{M}\)
રેખીય વેગમાન ના સંરક્ષણ દ્વારા \(\frac{1}{2}\,\,m{v^2}\, = \,\,\frac{1}{2}\,\,M{V^2}\,\, + \,\,\frac{1}{2}\,\,I{\omega ^2}\)
યાંત્રિક ઊર્જાના સંરક્ષણ દ્વારા \(\frac{1}{2}\,\,m{v^2}\, = \,\,\frac{1}{2}\,\,M{V^2}\,\, + \,\,\frac{1}{2}\,\,I{\omega ^2}\)
\(v\) અને \(\omega \) ની કિમતો મુક્તા \(\frac{1}{2}\,\,m{v^2}\, = \,\,\frac{1}{2}\,\,M\,\,{\left( {\frac{{mv}}{M}} \right)^2}\, + \,\,\frac{1}{2}\,I\,\,{\left( {\frac{{mvd}}{I}} \right)^2}\) અહી \(\,I\,\, = \,\,\frac{{M{L^2}}}{{12}}\)
તેથી \(\,1\,\, = \,\, \frac{m}{M}\,\, + \,\,\,\frac{{m{d^2}}}{{M{L^2}/12}}\,\,\,\, \)
\(\Rightarrow \,\,\,\,m\,\, = \,\,\,\frac{{M{L^2}}}{{({L^2} + 12{d^2})}}\,\,\)